2,732 research outputs found

    Neologistic jargon aphasia and agraphia in primary progressive aphasia

    Get PDF
    The terms 'jargon aphasia' and 'jargon agraphia' describe the production of incomprehensible language containing frequent phonological, semantic or neologistic errors in speech and writing, respectively. Here we describe two patients with primary progressive aphasia (PPA) who produced neologistic jargon either in speech or writing. We suggest that involvement of the posterior superior temporal-inferior parietal region may lead to a disconnection between stored lexical representations and language output pathways leading to aberrant activation of phonemes in neologistic jargon. Parietal lobe involvement is relatively unusual in PPA, perhaps accounting for the comparative rarity of jargon early in the course of these diseases. (C) 2008 Elsevier B.V. All rights reserved

    A Hypnic Hypothesis of Alzheimer's Disease

    Get PDF
    Background: Understanding the pathophysiology of Alzheimer's disease (AD) is of fundamental importance for improved diagnosis, monitoring and ultimately, treatment. Objective: A role for the sleep-wake cycle in the pathogenesis of AD has been proposed, but remains to be worked out in detail. Methods: Here we draw together several lines of previous work to outline a ‘hypnic hypothesis' of AD. Results: We propose that altered function of brainstem neurotransmitter pathways associated with sleep, promotes regionally specific disintegration of a cortico-subcortical ‘default mode' brain network that is selectively vulnerable in AD. Conclusion: The formation of a dynamic toxic state within this vulnerable network linked to sleep-wake disruption, would in turn lead to failure of synaptic repair, increased transmission of pathogenic misfolded proteins and a self-amplifying neurodegenerative process. We consider the evidence for this hypnic hypothesis and the implications that follow on from it

    Brain disorders and the biological role of music

    Get PDF
    Despite its evident universality and high social value, the ultimate biological role of music and its connection to brain disorders remain poorly understood. Recent findings from basic neuroscience have shed fresh light on these old problems. New insights provided by clinical neuroscience concerning the effects of brain disorders promise to be particularly valuable in uncovering the underlying cognitive and neural architecture of music and for assessing candidate accounts of the biological role of music. Here we advance a new model of the biological role of music in human evolution and the link to brain disorders, drawing on diverse lines of evidence derived from comparative ethology, cognitive neuropsychology and neuroimaging studies in the normal and the disordered brain. We propose that music evolved from the call signals of our hominid ancestors as a means mentally to rehearse and predict potentially costly, affectively laden social routines in surrogate, coded, low-cost form: essentially, a mechanism for transforming emotional mental states efficiently and adaptively into social signals. This biological role of music has its legacy today in the disordered processing of music and mental states that characterizes certain developmental and acquired clinical syndromes of brain network disintegration

    Patterns of regional cerebellar atrophy in genetic frontotemporal dementia

    Get PDF
    BACKGROUND: Frontotemporal dementia (FTD) is a heterogeneous neurodegenerative disorder with a strong genetic component. The cerebellum has not traditionally been felt to be involved in FTD but recent research has suggested a potential role. METHODS: We investigated the volumetry of the cerebellum and its subregions in a cohort of 44 patients with genetic FTD (20 MAPT, 7 GRN, and 17 C9orf72 mutation carriers) compared with 18 cognitively normal controls. All groups were matched for age and gender. On volumetric T1-weighted magnetic resonance brain images we used an atlas propagation and label fusion strategy of the Diedrichsen cerebellar atlas to automatically extract subregions including the cerebellar lobules, the vermis and the deep nuclei. RESULTS: The global cerebellar volume was significantly smaller in C9orf72 carriers (mean (SD): 99989 (8939) mm(3)) compared with controls (108136 (7407) mm(3)). However, no significant differences were seen in the MAPT and GRN carriers compared with controls (104191 (6491) mm(3) and 107883 (6205) mm(3) respectively). Investigating the individual subregions, C9orf72 carriers had a significantly lower volume than controls in lobule VIIa-Crus I (15% smaller, p < 0.0005), whilst MAPT mutation carriers had a significantly lower vermal volume (10% smaller, p = 0.001) than controls. All cerebellar subregion volumes were preserved in GRN carriers compared with controls. CONCLUSION: There appears to be a differential pattern of cerebellar atrophy in the major genetic forms of FTD, being relatively spared in GRN, localized to the lobule VIIa-Crus I in the superior-posterior region of the cerebellum in C9orf72, the area connected via the thalamus to the prefrontal cortex and involved in cognitive function, and localized to the vermis in MAPT, the 'limbic cerebellum' involved in emotional processing

    In vivo staging of frontotemporal lobar degeneration TDP-43 type C pathology

    Get PDF
    Background: TDP-43 type C is one of the pathological forms of frontotemporal lobar degeneration (FTLD) and mainly associated clinically with the semantic variant of primary progressive aphasia (svPPA). We aimed to define in vivo the sequential pattern of neuroanatomical involvement in a cohort of patients with FTLD-TDP type C pathology. Methods: We extracted the volumes of a set of cortical and subcortical regions from MRI scans of 19 patients with post mortem confirmed TDP-43 type C pathology (all with left hemisphere-predominant atrophy at baseline). In the initial development phase, we used w-scores computed from 81 cognitively normal controls to define a set of sequential stages of neuroanatomical involvement within the FTLD-TDP type C cohort where a w-score of < − 1.65 was considered abnormal. In a subsequent validation phase, we used 31 follow-up scans from 14 of the 19 patients in the same cohort to confirm the staging model. Results: Four sequential stages were identified in the initial development phase. Stage 1 was defined by atrophy in the left amygdala, medial temporal cortex, temporal pole, lateral temporal cortex and right medial temporal cortex; Stage 2 by atrophy in the left supratemporal cortex; Stage 3 by atrophy in the right anterior insula; and Stage 4 by atrophy in the right accumbens. In the validation phase, calculation of w-scores in the longitudinal scans confirmed the staging system, with all patients either staying in the same stage or progressing to a later stage at follow-up. Conclusion: In vivo imaging is able to detect distinct stages of neuroanatomical involvement in FTLD-TDP type C pathology. Using an imaging-derived staging system allows a more refined stratification of patients with svPPA during life

    An information theoretic characterisation of auditory encoding.

    Get PDF
    The entropy metric derived from information theory provides a means to quantify the amount of information transmitted in acoustic streams like speech or music. By systematically varying the entropy of pitch sequences, we sought brain areas where neural activity and energetic demands increase as a function of entropy. Such a relationship is predicted to occur in an efficient encoding mechanism that uses less computational resource when less information is present in the signal: we specifically tested the hypothesis that such a relationship is present in the planum temporale (PT). In two convergent functional MRI studies, we demonstrated this relationship in PT for encoding, while furthermore showing that a distributed fronto-parietal network for retrieval of acoustic information is independent of entropy. The results establish PT as an efficient neural engine that demands less computational resource to encode redundant signals than those with high information content

    Molecular nexopathies: a new paradigm of neurodegenerative disease.

    Get PDF
    Neural networks provide candidate substrates for the spread of proteinopathies causing neurodegeneration, and emerging data suggest that macroscopic signatures of network disintegration differentiate diseases. However, how do protein abnormalities produce network signatures? The answer may lie with 'molecular nexopathies': specific, coherent conjunctions of pathogenic protein and intrinsic network characteristics that define network signatures of neurodegenerative pathologies. Key features of the paradigm that we propose here include differential intrinsic network vulnerability to propagating protein abnormalities, in part reflecting developmental structural and functional factors; differential vulnerability of neural connection types (e.g., clustered versus distributed connections) to particular pathogenic proteins; and differential impact of molecular effects (e.g., toxic-gain-of-function versus loss-of-function) on gradients of network damage. The paradigm has implications for understanding and predicting neurodegenerative disease biology

    The undiscovered syndrome: Macdonald Critchley's case of semantic dementia

    Get PDF
    Semantic dementia is a unique clinicopathological syndrome in the frontotemporal lobar degeneration spectrum. It is characterized by progressive and relatively selective impairment of semantic memory, associated with asymmetric antero-inferior temporal lobe atrophy. Although the syndrome became widely recognized only in the 1980s, descriptions of cases with typical features of semantic dementia have been on record for over a century. Here, we draw attention to a well documented historical case of a patient with features that would have fulfilled current consensus criteria for semantic dementia, as reconstructed from the notes made by her neurologist, Macdonald Critchley, in 1938. This case raises a number of issues concerning the nosology of the semantic dementia syndrome and the potential value of archived case material

    Data processing of remotely sensed airborne hyperspectral data using the Airborne Processing Library (APL): Geocorrection algorithm descriptions and spatial accuracy assessment

    Get PDF
    This is the author's preprint. The final version is available from the publisher via the DOI in this record.The authors would like to thank Dr. Peter Land for useful discussions on reflectance spectra of ground targets. Fig. 9 contains Ordnance Survey OpenData © Crown copyright and database right 2013. The hyperspectral data used in this report were collected by the Natural Environment Research Council Airborne Research and Survey Facility.Remote sensing airborne hyperspectral data are routinely used for applications including algorithm development for satellite sensors, environmental monitoring and atmospheric studies. Single flight lines of airborne hyperspectral data are often in the region of tens of gigabytes in size. This means that a single aircraft can collect terabytes of remotely sensed hyperspectral data during a single year. Before these data can be used for scientific analyses, they need to be radiometrically calibrated, synchronised with the aircraft's position and attitude and then geocorrected. To enable efficient processing of these large datasets the UK Airborne Research and Survey Facility has recently developed a software suite, the Airborne Processing Library (APL), for processing airborne hyperspectral data acquired from the Specim AISA Eagle and Hawk instruments. The APL toolbox allows users to radiometrically calibrate, geocorrect, reproject and resample airborne data. Each stage of the toolbox outputs data in the common Band Interleaved Lines (BILs) format, which allows its integration with other standard remote sensing software packages. APL was developed to be user-friendly and suitable for use on a workstation PC as well as for the automated processing of the facility; to this end APL can be used under both Windows and Linux environments on a single desktop machine or through a Grid engine. A graphical user interface also exists. In this paper we describe the Airborne Processing Library software, its algorithms and approach. We present example results from using APL with an AISA Eagle sensor and we assess its spatial accuracy using data from multiple flight lines collected during a campaign in 2008 together with in situ surveyed ground control points. © 2013 Elsevier Ltd
    corecore